Improving an upper bound on the size of k-regular induced subgraphs
Carlos J. Luz ()
Additional contact information
Carlos J. Luz: Escola Superior de Tecnologia de Setúbal/Instituto Politécnico de Setúbal
Journal of Combinatorial Optimization, 2011, vol. 22, issue 4, No 27, 882-894
Abstract:
Abstract This paper considers the NP-hard graph problem of determining a maximum cardinality subset of vertices inducing a k-regular subgraph. For any graph G, this maximum will be denoted by α k (G). From a well known Motzkin-Straus result, a relationship is deduced between α k (G) and the independence number α(G). Next, it is proved that the upper bounds υ k (G) introduced in Cardoso et al. (J. Comb. Optim., 14, 455–463, 2007) can easily be computed from υ 0(G), for any positive integer k. This relationship also allows one to present an alternative proof of the Hoffman bound extension introduced in the above paper. The paper continues with the introduction of a new upper bound on α k (G) improving υ k (G). Due to the difficulty of computing this improved bound, two methods are provided for approximating it. Finally, some computational experiments which were performed to compare all bounds studied are reported.
Keywords: Graphs; Independent sets; Induced matchings; Combinatorial optimization (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-010-9345-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:22:y:2011:i:4:d:10.1007_s10878-010-9345-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-010-9345-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().