Hamiltonian numbers of Möbius double loop networks
Gerard J. Chang (),
Ting-Pang Chang and
Li-Da Tong ()
Additional contact information
Gerard J. Chang: National Taiwan University
Ting-Pang Chang: National Sun Yat-sen University
Li-Da Tong: National Center for Theoretical Sciences
Journal of Combinatorial Optimization, 2012, vol. 23, issue 4, No 5, 462-470
Abstract:
Abstract For the study of hamiltonicity of graphs and digraphs, Goodman and Hedetniemi introduced the concept of Hamiltonian number. The Hamiltonian number h(D) of a digraph D is the minimum length of a closed walk containing all vertices of D. In this paper, we study Hamiltonian numbers of the following proposed networks, which include strongly connected double loop networks. For integers d≥1, m≥1 and ℓ≥0, the Möbius double loop network MDL(d,m,ℓ) is the digraph with vertex set {(i,j):0≤i≤d−1,0≤j≤m−1} and arc set {(i,j)(i+1,j) or (i,j)(i+1,j+1):0≤i≤d−2,0≤j≤m−1}∪{(d−1,j)(0,j+ℓ) or (d−1,j)(0,j+ℓ+1):0≤j≤m−1}, where the second coordinate y of a vertex (x,y) is taken modulo m. We give an upper bound for the Hamiltonian number of a Möbius double loop network. We also give a necessary and sufficient condition for a Möbius double loop network MDL(d,m,ℓ) to have Hamiltonian number at most dm, dm+d, dm+1 or dm+2.
Keywords: Hamiltonian cycle; Hamiltonian number; Double loop network (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-010-9360-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:23:y:2012:i:4:d:10.1007_s10878-010-9360-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-010-9360-4
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().