EconPapers    
Economics at your fingertips  
 

On the fractionality of the path packing problem

Natalia Vanetik ()
Additional contact information
Natalia Vanetik: Ben Gurion University of the Negev

Journal of Combinatorial Optimization, 2012, vol. 24, issue 4, No 9, 526-539

Abstract: Abstract Given an undirected graph G=(N,E), a subset T of its nodes and an undirected graph (T,S), G and (T,S) together are often called a network. A collection of paths in G whose end-pairs lie in S is called an integer multiflow. When these paths are allowed to have fractional weight, under the constraint that the total weight of the paths traversing a single edge does not exceed 1, we have a fractional multiflow in G. The problems of finding the maximum weight of paths with end-pairs in S over all fractional multiflows in G is called the fractional path packing problem. In 1989, A. Karzanov had defined the fractionality of the fractional path packing problem for a class of networks {G,(T,S)} as the smallest natural D such that for any network from the class, the fractional path packing problem has a solution which becomes integer-valued when multiplied by D (see A. Karzanov in Linear Algebra Appl. 114–115:293–328, 1989). He proved that the fractional path packing problem has infinite fractionality outside a very specific class of networks, and conjectured that within this class, the fractionality does not exceed 4. A. Karzanov also proved that the fractionality of the path packing problem is at most 8 by studying the fractionality of the dual problem. Special cases of Karzanov’s conjecture were proved in or are implied by the works of L.R. Ford and D.R. Fulkerson, Y. Dinitz, T.C. Hu, B.V. Cherkassky, L. Lovãsz and H. Hirai. We prove Karzanov’s conjecture by showing that the fractionality of the path packing problem is at most 4. Our proof is stand-alone and does not rely on Karzanov’s results.

Keywords: Path packing; Multiflow; Fractionality (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-011-9405-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:24:y:2012:i:4:d:10.1007_s10878-011-9405-3

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-011-9405-3

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:24:y:2012:i:4:d:10.1007_s10878-011-9405-3