EconPapers    
Economics at your fingertips  
 

(p,q)-total labeling of complete graphs

Ma-Lian Chia (), David Kuo (), Jing-Ho Yan () and Siou-Ru Yang ()
Additional contact information
Ma-Lian Chia: Aletheia University
David Kuo: National Dong Hwa University
Jing-Ho Yan: Aletheia University

Journal of Combinatorial Optimization, 2013, vol. 25, issue 4, No 6, 543-561

Abstract: Abstract Given a graph G and positive integers p,q with p≥q, the (p,q)-total number $\lambda_{p,q}^{T}(G)$ of G is the width of the smallest range of integers that suffices to label the vertices and the edges of G such that the labels of any two adjacent vertices are at least q apart, the labels of any two adjacent edges are at least q apart, and the difference between the labels of a vertex and its incident edges is at least p. Havet and Yu (Discrete Math 308:496–513, 2008) first introduced this problem and determined the exact value of $\lambda_{p,1}^{T}(K_{n})$ except for even n with p+5≤n≤6p 2−10p+4. Their proof for showing that $\lambda _{p,1}^{T}(K_{n})\leq n+2p-3$ for odd n has some mistakes. In this paper, we prove that if n is odd, then $\lambda_{p}^{T}(K_{n})\leq n+2p-3$ if p=2, p=3, or $4\lfloor\frac{p}{2}\rfloor+3\leq n\leq4p-1$ . And we extend some results that were given in Havet and Yu (Discrete Math 308:496–513, 2008). Beside these, we give a lower bound for $\lambda_{p,q}^{T}(K_{n})$ under the condition that q

Keywords: L(2; 1)-labeling; (p; q)-total labeling; Complete graph; Matching (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9471-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9471-1

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-012-9471-1

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9471-1