The partition method for poset-free families
Jerrold R. Griggs () and
Wei-Tian Li ()
Additional contact information
Jerrold R. Griggs: University of South Carolina
Wei-Tian Li: Academia Sinica
Journal of Combinatorial Optimization, 2013, vol. 25, issue 4, No 8, 587-596
Abstract:
Abstract Given a finite poset P, let ${\rm La}(n,P)$ denote the largest size of a family of subsets of an n-set that does not contain P as a (weak) subposet. We employ a combinatorial method, using partitions of the collection of all full chains of subsets of the n-set, to give simpler new proofs of the known asymptotic behavior of ${\rm La}(n,P)$ , as n→∞, when P is the r-fork $\mathcal {V}_{r}$ , the four-element N poset $\mathcal {N}$ , and the four-element butterfly-poset $\mathcal {B}$ .
Keywords: Combinatorics of partially ordered sets; Extremal set theory; Sperner theory; Lubell function (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9476-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9476-9
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9476-9
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().