On total weight choosability of graphs
Haili Pan () and
Daqing Yang ()
Additional contact information
Haili Pan: Fuzhou University
Daqing Yang: Fuzhou University
Journal of Combinatorial Optimization, 2013, vol. 25, issue 4, No 21, 766-783
Abstract:
Abstract For a graph G with vertex set V and edge set E, a (k,k′)-total list assignment L of G assigns to each vertex v a set L(v) of k real numbers as permissible weights, and assigns to each edge e a set L(e) of k′ real numbers as permissible weights. If for any (k,k′)-total list assignment L of G, there exists a mapping f:V∪E→ℝ such that f(y)∈L(y) for each y∈V∪E, and for any two adjacent vertices u and v, ∑ y∈N(u) f(uy)+f(u)≠∑ x∈N(v) f(vx)+f(v), then G is (k,k′)-total weight choosable. It is conjectured by Wong and Zhu that every graph is (2,2)-total weight choosable, and every graph with no isolated edges is (1,3)-total weight choosable. In this paper, it is proven that a graph G obtained from any loopless graph H by subdividing each edge with at least one vertex is (1,3)-total weight choosable and (2,2)-total weight choosable. It is shown that s-degenerate graphs (with s≥2) are (1,2s)-total weight choosable. Hence planar graphs are (1,10)-total weight choosable, and outerplanar graphs are (1,4)-total weight choosable. We also give a combinatorial proof that wheels are (2,2)-total weight choosable, as well as (1,3)-total weight choosable.
Keywords: Total weighting; Edge weighting; Vertex coloring (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9491-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9491-x
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9491-x
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().