The game Grundy number of graphs
Frédéric Havet () and
Xuding Zhu ()
Additional contact information
Frédéric Havet: I3S (CNRS, UNS) and INRIA
Xuding Zhu: Zhejiang Normal University
Journal of Combinatorial Optimization, 2013, vol. 25, issue 4, No 20, 752-765
Abstract:
Abstract Given a graph G=(V,E), two players, Alice and Bob, alternate their turns in choosing uncoloured vertices to be coloured. Whenever an uncoloured vertex is chosen, it is coloured by the least positive integer not used by any of its coloured neighbours. Alice’s goal is to minimise the total number of colours used in the game, and Bob’s goal is to maximise it. The game Grundy number of G is the number of colours used in the game when both players use optimal strategies. It is proved in this paper that the maximum game Grundy number of forests is 3, and the game Grundy number of any partial 2-tree is at most 7.
Keywords: Colouring game; Game Grundy number; Trees; Partial 2-trees (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9513-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9513-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9513-8
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().