Independent dominating sets in regular graphs
Julie Haviland ()
Additional contact information
Julie Haviland: Exeter College
Journal of Combinatorial Optimization, 2013, vol. 26, issue 1, No 9, 120-126
Abstract:
Abstract Let G be a simple, regular graph of order n and degree δ. The independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish new upper bounds, as functions of n and δ, for the independent domination number of regular graphs with $n/6
Keywords: Independent domination number; Regular graph; Extremal graph theory (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-011-9439-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:1:d:10.1007_s10878-011-9439-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-011-9439-6
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().