Approximation algorithm for uniform bounded facility location problem
Weng Kerui ()
Additional contact information
Weng Kerui: China University of Geosciences
Journal of Combinatorial Optimization, 2013, vol. 26, issue 2, No 5, 284-291
Abstract:
Abstract The uniform bounded facility location problem (UBFLP) seeks for the optimal way of locating facilities to minimize total costs (opening costs plus routing costs), while the maximal routing costs of all clients are at most a given bound M. After building a mixed 0–1 integer programming model for UBFLP, we present the first constant-factor approximation algorithm with an approximation guarantee of 6.853+ϵ for UBFLP on plane, which is composed of the algorithm by Dai and Yu (Theor. Comp. Sci. 410:756–765, 2009) and the schema of Xu and Xu (J. Comb. Optim. 17:424–436, 2008). We also provide a heuristic algorithm based on Benders decomposition to solve UBFLP on general graphes, and the computational experience shows that the heuristic works well.
Keywords: Facility location; Routing costs bound; Approximation algorithm; Benders decomposition (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9461-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:2:d:10.1007_s10878-012-9461-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9461-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().