Tight approximation bounds for combinatorial frugal coverage algorithms
Ioannis Caragiannis (),
Christos Kaklamanis and
Maria Kyropoulou
Additional contact information
Ioannis Caragiannis: University of Patras
Christos Kaklamanis: University of Patras
Maria Kyropoulou: University of Patras
Journal of Combinatorial Optimization, 2013, vol. 26, issue 2, No 6, 292-309
Abstract:
Abstract We consider the frugal coverage problem, an interesting variation of set cover defined as follows. Instances of the problem consist of a universe of elements and a collection of sets over these elements; the objective is to compute a subcollection of sets so that the number of elements it covers plus the number of sets not chosen is maximized. The problem was introduced and studied by Huang and Svitkina (Proceedings of the 29th IARCS annual conference on foundations of software technology and theoretical computer science (FSTTCS), pp. 227–238, 2009) due to its connections to the donation center location problem. We prove that the greedy algorithm has approximation ratio at least 0.782, improving a previous bound of 0.731 in Huang and Svitkina (Proceedings of the 29th IARCS annual conference on foundations of software technology and theoretical computer science (FSTTCS), pp. 227–238, 2009). We also present a further improvement that is obtained by adding a simple corrective phase at the end of the execution of the greedy algorithm. The approximation ratio achieved in this way is at least 0.806. Finally, we consider a packing based algorithm that uses semi-local optimization, and show that its approximation ratio is not less than 0.872. Our analysis is based on the use of linear programs which capture the behavior of the algorithms in worst-case examples. The obtained bounds are proved to be tight.
Keywords: Frugal coverage; Set cover; Set packing; Approximation algorithms (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9464-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:2:d:10.1007_s10878-012-9464-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9464-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().