Super-cyclically edge-connected regular graphs
Jin-Xin Zhou () and
Yan-Quan Feng ()
Additional contact information
Jin-Xin Zhou: Beijing Jiaotong University
Yan-Quan Feng: Beijing Jiaotong University
Journal of Combinatorial Optimization, 2013, vol. 26, issue 2, No 12, 393-411
Abstract:
Abstract A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is called cyclically separable. We call a cyclically separable graph super cyclically edge-connected, in short, super-λ c , if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle. In Z. Zhang, B. Wang (Super cyclically edge-connected transitive graphs, J. Combin. Optim. 22:549–562, 2011), it is proved that a connected edge-transitive graph is super-λ c if either G is cubic with girth at least 7 or G has minimum degree at least 4 and girth at least 6, and the authors also conjectured that a connected graph which is both vertex-transitive and edge-transitive is always super cyclically edge-connected. In this article, for a λ c -optimal but not super-λ c graph G, all possible λ c -superatoms of G which have non-empty intersection with other λ c -superatoms are determined. This is then used to give a complete classification of non-super-λ c edge-transitive k(k≥3)-regular graphs.
Keywords: Cyclic edge-cut; Cyclic edge-connectivity; Super cyclically edge-connected; Edge-transitive (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9472-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:2:d:10.1007_s10878-012-9472-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9472-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().