Bin packing with “Largest In Bottom” constraint: tighter bounds and generalizations
Gyorgy Dosa (),
Zsolt Tuza () and
Deshi Ye ()
Additional contact information
Gyorgy Dosa: University of Pannonia
Zsolt Tuza: Hungarian Academy of Sciences
Deshi Ye: Zhejiang University
Journal of Combinatorial Optimization, 2013, vol. 26, issue 3, No 2, 416-436
Abstract:
Abstract The (online) bin packing problem with LIB constraint is stated as follows: The items arrive one by one, and must be packed into unit capacity bins, but a bigger item cannot be packed into a bin which already contains a smaller item. The number of used bins has to be minimized as usually. We show that the absolute performance bound of algorithm First Fit is not worse than 2+1/6≈2.1666 for the problem, improving the previous best upper bound 2.5. Moreover, if the item sizes do not exceed 1/d, then we improve the previous best result 2+1/d to 2+1/d(d+2), for any d≥2. (Both previously best results are due to Epstein, Nav. Res. Logist. 56(8):780–786, 2009.) Furthermore, we define a problem with the generalized LIB constraint, where some incoming items cannot be packed into the bins of some already packed items. The (in)compatibility of the incoming item with the items already packed becomes known only at the arrival of the actual item, and is given by an undirected graph (and, as usual in case of online graph problems, we can see only that part of the graph what already arrived). We show that 3 is an upper bound for this general problem if some natural transitivity constraint is satisfied.
Keywords: Bin packing; LIB constraint; Incompatibility graph (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-011-9408-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:26:y:2013:i:3:d:10.1007_s10878-011-9408-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-011-9408-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().