Scheduling and packing malleable and parallel tasks with precedence constraints of bounded width
Elisabeth Günther (),
Felix G. König () and
Nicole Megow ()
Additional contact information
Elisabeth Günther: Technische Universität Berlin
Felix G. König: TomTom International BV
Nicole Megow: Max-Planck-Institut für Informatik
Journal of Combinatorial Optimization, 2014, vol. 27, issue 1, No 14, 164-181
Abstract:
Abstract We study the problems of non-preemptively scheduling and packing malleable and parallel tasks with precedence constraints to minimize the makespan. In the scheduling variant, we allow the free choice of processors; in packing, each task must be assigned to a contiguous subset. Malleable tasks can be processed on different numbers of processors with varying processing times, while parallel tasks require a fixed number of processors. For precedence constraints of bounded width, we resolve the complexity status of the problem with any number of processors and any width bound. We present an FPTAS based on Dilworth’s decomposition theorem for the NP-hard problem variants, and exact efficient algorithms for all remaining special cases. For our positive results, we do not require the otherwise common monotonous penalty assumption on the processing times of malleable tasks, whereas our hardness results hold even when assuming this restriction. We complement our results by showing that these problems are all strongly NP-hard under precedence constraints which form a tree.
Keywords: Approximation; Scheduling; Precedence constraints; Makespan; Malleable; Parallel (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9498-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:27:y:2014:i:1:d:10.1007_s10878-012-9498-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9498-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().