On the performance of Scatter Search for post-enrolment course timetabling problems
Ghaith Jaradat (),
Masri Ayob () and
Zulkifli Ahmad ()
Additional contact information
Ghaith Jaradat: The National University of Malaysia
Masri Ayob: The National University of Malaysia
Zulkifli Ahmad: The National University of Malaysia
Journal of Combinatorial Optimization, 2014, vol. 27, issue 3, No 1, 417-439
Abstract:
Abstract This study presents an investigation of enhancing the capability of the Scatter Search (SS) metaheuristic in guiding the search effectively toward elite solutions. Generally, SS generates a population of random initial solutions and systematically selects a set of diverse and elite solutions as a reference set for guiding the search. The work focuses on three strategies that may have an impact on the performance of SS. These are: explicit solutions combination, dynamic memory update, and systematic search re-initialization. First, the original SS is applied. Second, we propose two versions of the SS (V1 and V2) with different strategies. In contrast to the original SS, SSV1 and SSV2 use the quality and diversity of solutions to create and update the memory, to perform solutions combinations, and to update the search. The differences between SSV1 and SSV2 is that SSV1 employs the hill climbing routine twice whilst SSV2 employs hill climbing and iterated local search method. In addition, SSV1 combines all pairs (of quality and diverse solutions) from the RefSet whilst SSV2 combines only one pair. Both SSV1 and SSV2 update the RefSet dynamically rather than static (as in the original SS), where, whenever a better quality or more diverse solution is found, the worst solution in RefSet is replaced by the new solution. SSV1 and SSV2 employ diversification generation method twice to re-initialize the search. The performance of the SS is tested on three benchmark post-enrolment course timetabling problems. The results had shown that SSV2 performs better than the original SS and SSV1 (in terms of solution’s quality and computational time). It clearly demonstrates the effectiveness of using dynamic memory update, systematic search re-initialization, and combining only one pair of elite solutions. Apart from that, SSV1 and SSV2 can produce good quality solutions (comparable with other approaches), and outperforms some approaches reported in the literature (on some instances with regards to the tested datasets). Moreover, the study shows that by combining (simple crossover) only one pair of elite solutions in each RefSet update, and updating the memory dynamically, the computational time is reduced.
Keywords: Scatter Search metaheuristic; Explicit solutions combination; Dynamic memory update; Systematic search re-initialization; Post-enrolment course timetabling problem (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9521-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:27:y:2014:i:3:d:10.1007_s10878-012-9521-8
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9521-8
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().