Popularity at minimum cost
Telikepalli Kavitha (),
Meghana Nasre () and
Prajakta Nimbhorkar ()
Additional contact information
Telikepalli Kavitha: Tata Institute of Fundamental Research
Meghana Nasre: The University of Texas at Austin
Prajakta Nimbhorkar: Chennai Mathematical Institute
Journal of Combinatorial Optimization, 2014, vol. 27, issue 3, No 13, 574-596
Abstract:
Abstract We consider an extension of the popular matching problem in this paper. The input to the popular matching problem is a bipartite graph $G = (\mathcal{A}\cup\mathcal{B},E)$ , where $\mathcal{A}$ is a set of people, $\mathcal{B}$ is a set of items, and each person $a \in\mathcal{A}$ ranks a subset of items in order of preference, with ties allowed. The popular matching problem seeks to compute a matching M ∗ between people and items such that there is no matching M where more people are happier with M than with M ∗. Such a matching M ∗ is called a popular matching. However, there are simple instances where no popular matching exists. Here we consider the following natural extension to the above problem: associated with each item $b \in\mathcal{B}$ is a non-negative price cost(b), that is, for any item b, new copies of b can be added to the input graph by paying an amount of cost(b) per copy. When G does not admit a popular matching, the problem is to “augment” G at minimum cost such that the new graph admits a popular matching. We show that this problem is NP-hard; in fact, it is NP-hard to approximate it within a factor of $\sqrt{n_{1}}/2$ , where n 1 is the number of people. This problem has a simple polynomial time algorithm when each person has a preference list of length at most 2. However, if we consider the problem of constructing a graph at minimum cost that admits a popular matching that matches all people, then even with preference lists of length 2, the problem becomes NP-hard. On the other hand, when the number of copies of each item is fixed, we show that the problem of computing a minimum cost popular matching or deciding that no popular matching exists can be solved in O(mn 1) time, where m is the number of edges.
Keywords: Bipartite graphs; Matchings; One-sided preference lists; NP-hardness (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9537-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:27:y:2014:i:3:d:10.1007_s10878-012-9537-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9537-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().