Algorithms with limited number of preemptions for scheduling on parallel machines
Yiwei Jiang (),
Zewei Weng and
Jueliang Hu ()
Additional contact information
Yiwei Jiang: Zhejiang Sci-Tech University
Zewei Weng: Zhejiang Sci-Tech University
Jueliang Hu: Zhejiang Sci-Tech University
Journal of Combinatorial Optimization, 2014, vol. 27, issue 4, No 7, 723 pages
Abstract:
Abstract In previous study on comparing the makespan of the schedule allowed to be preempted at most i times and that of the optimal schedule with unlimited number of preemptions, the worst case ratio was usually obtained by analyzing the structures of the optimal schedules. For m identical machines case, the worst case ratio was shown to be 2m/(m+i+1) for any 0≤i≤m−1 (Braun and Schmidt in SIAM J. Comput. 32(3):671–680, 2003), and they showed that LPT algorithm is an exact algorithm which can guarantee the worst case ratio for i=0. In this paper, we propose a simpler method which is based on the design and analysis of the algorithm and finding an instance in the worst case. It can not only obtain the worst case ratio but also give a linear algorithm which can guarantee this ratio for any 0≤i≤m−1, and thus we generalize the previous results. We also make a discussion on the trade-off between the objective value and the number of preemptions. In addition, we consider the i-preemptive scheduling on two uniform machines. For both i=0 and i=1, we give two linear algorithms and present the worst-case ratios with respect to s, i.e., the ratio of the speeds of two machines.
Keywords: i-Preemptive scheduling; Approximation algorithm; Worst case ratio; Makespan (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-012-9545-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:27:y:2014:i:4:d:10.1007_s10878-012-9545-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-012-9545-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().