The minimum number of hubs in networks
Easton Li Xu () and
Guangyue Han ()
Additional contact information
Easton Li Xu: The University of Hong Kong
Guangyue Han: The University of Hong Kong
Journal of Combinatorial Optimization, 2015, vol. 30, issue 4, No 24, 1196-1218
Abstract:
Abstract In this paper, a hub refers to a non-terminal vertex of degree at least three. We study the minimum number of hubs needed in a network to guarantee certain flow demand constraints imposed between multiple pairs of sources and sinks. We prove that under the constraints, regardless of the size of the network, such minimum number is always upper bounded and we derive tight upper bounds for some special parameters. In particular, for two pairs of sources and sinks, we present a novel path-searching algorithm, the analysis of which is instrumental for the derivations of the tight upper bounds. Our results are of both theoretical and practical interest: in theory, they can be viewed as generalizations of the classical Menger’s theorem to a class of undirected graphs with multiple sources and sinks; in practice, our results, roughly speaking, suggest that for some given flow demand constraints, not “too many” hubs are needed in a network.
Keywords: Menger’s theorem; Vertex-disjoint paths; Connectivity (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-013-9697-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:30:y:2015:i:4:d:10.1007_s10878-013-9697-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-013-9697-6
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().