Modified differential evolution with self-adaptive parameters method
Xiangtao Li () and
Minghao Yin ()
Additional contact information
Xiangtao Li: Northeast Normal University
Minghao Yin: Northeast Normal University
Journal of Combinatorial Optimization, 2016, vol. 31, issue 2, No 7, 546-576
Abstract:
Abstract The differential evolution algorithm (DE) is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problem. In this paper, the proposed algorithm uses two mutation rules based on the rand and best individuals among the entire population. In order to balance the exploitation and exploration of the algorithm, two new rules are combined through a probability rule. Then, self-adaptive parameter setting is introduced as uniformly random numbers to enhance the diversity of the population based on the relative success number of the proposed two new parameters in a previous period. In other aspects, our algorithm has a very simple structure and thus it is easy to implement. To verify the performance of MDE, 16 benchmark functions chosen from literature are employed. The results show that the proposed MDE algorithm clearly outperforms the standard differential evolution algorithm with six different parameter settings. Compared with some evolution algorithms (ODE, OXDE, SaDE, JADE, jDE, CoDE, CLPSO, CMA-ES, GL-25, AFEP, MSAEP and ENAEP) from literature, experimental results indicate that the proposed algorithm performs better than, or at least comparable to state-of-the-art approaches from literature when considering the quality of the solution obtained.
Keywords: Differential evolution; Success rate; Self-adaptive; Numerical optimization; Evolutionary algorithms (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-014-9773-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:31:y:2016:i:2:d:10.1007_s10878-014-9773-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-014-9773-6
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().