Improving robustness of next-hop routing
Glencora Borradaile (),
W. Sean Kennedy (),
Gordon Wilfong () and
Lisa Zhang ()
Additional contact information
Glencora Borradaile: Oregon State University
W. Sean Kennedy: Bell Labs
Gordon Wilfong: Bell Labs
Lisa Zhang: Bell Labs
Journal of Combinatorial Optimization, 2016, vol. 31, issue 3, No 17, 1206-1220
Abstract:
Abstract A weakness of next-hop routing is that following a link or router failure there may be no routes between some source-destination pairs, or packets may get stuck in a routing loop as the protocol operates to establish new routes. In this article, we address these weaknesses by describing mechanisms to choose alternate next hops. Our first contribution is to model the scenario as the following tree augmentation problem. Consider a mixed graph where some edges are directed and some undirected. The directed edges form a spanning tree pointing towards the common destination node. Each directed edge represents the unique next hop in the routing protocol. Our goal is to direct the undirected edges so that the resulting graph remains acyclic and the number of nodes with outdegree two or more is maximized. These nodes represent those with alternative next hops in their routing paths. We show that tree augmentation is NP-hard in general and present a simple $$\frac{1}{2}$$ 1 2 -approximation algorithm. We also study 3 special cases. We give exact polynomial-time algorithms for when the input spanning tree consists of exactly 2 directed paths or when the input graph has bounded treewidth. For planar graphs, we present a polynomial-time approximation scheme when the input tree is a breadth-first search tree. To the best of our knowledge, tree augmentation has not been previously studied.
Keywords: Graph; Orientation; Acyclic; Tree (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-014-9818-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:31:y:2016:i:3:d:10.1007_s10878-014-9818-x
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-014-9818-x
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().