On judicious partitions of graphs
Muhuo Liu () and 
Baogang Xu ()
Additional contact information 
Muhuo Liu: Nanjing Normal University
Baogang Xu: Nanjing Normal University
Journal of Combinatorial Optimization, 2016, vol. 31, issue 4, No 2, 1383-1398
Abstract:
Abstract Let $$k, m$$ k , m be positive integers, let $$G$$ G be a graph with $$m$$ m edges, and let $$h(m)=\sqrt{2m+\frac{1}{4}}-\frac{1}{2}$$ h ( m ) = 2 m + 1 4 - 1 2 . Bollobás and Scott asked whether $$G$$ G admits a $$k$$ k -partition $$V_{1}, V_{2}, \ldots , V_{k}$$ V 1 , V 2 , … , V k such that $$\max _{1\le i\le k} \{e(V_{i})\}\le \frac{m}{k^2}+\frac{k-1}{2k^2}h(m)$$ max 1 ≤ i ≤ k { e ( V i ) } ≤ m k 2 + k - 1 2 k 2 h ( m ) and $$e(V_1, \ldots , V_k)\ge {k-1\over k} m +{k-1\over 2k}h(m) -\frac{(k-2)^{2}}{8k}$$ e ( V 1 , … , V k ) ≥ k - 1 k m + k - 1 2 k h ( m ) - ( k - 2 ) 2 8 k . In this paper, we present a positive answer to this problem on the graphs with large number of edges and small number of vertices with degrees being multiples of $$k$$ k . Particularly, if $$d$$ d is not a multiple of $$k$$ k and $$G$$ G is $$d$$ d -regular with $$m\ge {9\over 128}k^4(k-2)^2$$ m ≥ 9 128 k 4 ( k - 2 ) 2 , then $$G$$ G admits a $$k$$ k -partition as desired. We also improve an earlier result by showing that $$G$$ G admits a partition $$V_{1}, V_{2}, \ldots , V_{k}$$ V 1 , V 2 , … , V k such that $$e(V_{1},V_{2},\ldots ,V_{k})\ge \frac{k-1}{k}m+\frac{k-1}{2k}h(m)-\frac{(k-2)^{2}}{2(k-1)}$$ e ( V 1 , V 2 , … , V k ) ≥ k - 1 k m + k - 1 2 k h ( m ) - ( k - 2 ) 2 2 ( k - 1 ) and $$\max _{1\le i\le k}\{e(V_{i})\}\le \frac{m}{k^{2}}+\frac{k-1}{2k^{2}}h(m)$$ max 1 ≤ i ≤ k { e ( V i ) } ≤ m k 2 + k - 1 2 k 2 h ( m ) .
Keywords: Graph; Partition; Judicious; 05C35; 05C75 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc 
Citations: 
Downloads: (external link)
http://link.springer.com/10.1007/s10878-015-9828-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX 
RIS (EndNote, ProCite, RefMan) 
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:31:y:2016:i:4:d:10.1007_s10878-015-9828-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-015-9828-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization  from  Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().