EconPapers    
Economics at your fingertips  
 

Improved algorithmic results for unsplittable stable allocation problems

Ágnes Cseh () and Brian C. Dean ()
Additional contact information
Ágnes Cseh: TU Berlin
Brian C. Dean: Clemson University

Journal of Combinatorial Optimization, 2016, vol. 32, issue 3, No 1, 657-671

Abstract: Abstract The stable allocation problem is a many-to-many generalization of the well-known stable marriage problem, where we seek a bipartite assignment between, say, jobs (of varying sizes) and machines (of varying capacities) that is “stable” based on a set of underlying preference lists submitted by the jobs and machines. Building on the initial work of Dean et al. (The unsplittable stable marriage problem, 2006), we study a natural “unsplittable” variant of this problem, where each assigned job must be fully assigned to a single machine. Such unsplittable bipartite assignment problems generally tend to be NP-hard, including previously-proposed variants of the unsplittable stable allocation problem (McDermid and Manlove in J Comb Optim 19(3): 279–303, 2010). Our main result is to show that under an alternative model of stability, the unsplittable stable allocation problem becomes solvable in polynomial time; although this model is less likely to admit feasible solutions than the model proposed in McDermid and Manlove (J Comb Optim 19(3): 279–303, McDermid and Manlove 2010), we show that in the event there is no feasible solution, our approach computes a solution of minimal total congestion (overfilling of all machines collectively beyond their capacities). We also describe a technique for rounding the solution of a stable allocation problem to produce “relaxed” unsplit solutions that are only mildly infeasible, where each machine is overcongested by at most a single job.

Keywords: Stable matchings; Stable allocations; Rotations; Unsplittable assignments (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-015-9889-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:32:y:2016:i:3:d:10.1007_s10878-015-9889-3

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-015-9889-3

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:32:y:2016:i:3:d:10.1007_s10878-015-9889-3