EconPapers    
Economics at your fingertips  
 

Nordhaus–Gaddum type result for the matching number of a graph

Huiqiu Lin (), Jinlong Shu and Baoyindureng Wu ()
Additional contact information
Huiqiu Lin: East China University of Science and Technology
Jinlong Shu: East China Normal University
Baoyindureng Wu: Xinjiang University

Journal of Combinatorial Optimization, 2017, vol. 34, issue 3, No 17, 916-930

Abstract: Abstract For a graph G, $$\alpha '(G)$$ α ′ ( G ) is the matching number of G. Let $$k\ge 2$$ k ≥ 2 be an integer, $$K_{n}$$ K n be the complete graph of order n. Assume that $$G_{1}, G_{2}, \ldots , G_{k}$$ G 1 , G 2 , … , G k is a k-decomposition of $$K_{n}$$ K n . In this paper, we show that (1) $$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$ n 2 ≤ ∑ i = 1 k α ′ ( G i ) ≤ k n 2 . (2) If each $$G_{i}$$ G i is non-empty for $$i = 1, \ldots , k$$ i = 1 , … , k , then for $$n\ge 6k$$ n ≥ 6 k , $$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$ ∑ i = 1 k α ′ ( G i ) ≥ n + k - 1 2 . (3) If $$G_{i}$$ G i has no isolated vertices for $$i = 1, \ldots , k$$ i = 1 , … , k , then for $$n\ge 8k$$ n ≥ 8 k , $$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$ ∑ i = 1 k α ′ ( G i ) ≥ n 2 + k . The bounds in (1), (2) and (3) are sharp. (4) When $$k= 2$$ k = 2 , we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.

Keywords: Decomposition; Matching number; Nordhaus–Gaddum type result; 05C50 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0120-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:34:y:2017:i:3:d:10.1007_s10878-017-0120-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-017-0120-6

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:34:y:2017:i:3:d:10.1007_s10878-017-0120-6