Nordhaus–Gaddum type result for the matching number of a graph
Huiqiu Lin (),
Jinlong Shu and
Baoyindureng Wu ()
Additional contact information
Huiqiu Lin: East China University of Science and Technology
Jinlong Shu: East China Normal University
Baoyindureng Wu: Xinjiang University
Journal of Combinatorial Optimization, 2017, vol. 34, issue 3, No 17, 916-930
Abstract:
Abstract For a graph G, $$\alpha '(G)$$ α ′ ( G ) is the matching number of G. Let $$k\ge 2$$ k ≥ 2 be an integer, $$K_{n}$$ K n be the complete graph of order n. Assume that $$G_{1}, G_{2}, \ldots , G_{k}$$ G 1 , G 2 , … , G k is a k-decomposition of $$K_{n}$$ K n . In this paper, we show that (1) $$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$ n 2 ≤ ∑ i = 1 k α ′ ( G i ) ≤ k n 2 . (2) If each $$G_{i}$$ G i is non-empty for $$i = 1, \ldots , k$$ i = 1 , … , k , then for $$n\ge 6k$$ n ≥ 6 k , $$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$ ∑ i = 1 k α ′ ( G i ) ≥ n + k - 1 2 . (3) If $$G_{i}$$ G i has no isolated vertices for $$i = 1, \ldots , k$$ i = 1 , … , k , then for $$n\ge 8k$$ n ≥ 8 k , $$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$ ∑ i = 1 k α ′ ( G i ) ≥ n 2 + k . The bounds in (1), (2) and (3) are sharp. (4) When $$k= 2$$ k = 2 , we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.
Keywords: Decomposition; Matching number; Nordhaus–Gaddum type result; 05C50 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0120-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:34:y:2017:i:3:d:10.1007_s10878-017-0120-6
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-017-0120-6
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().