On global integer extrema of real-valued box-constrained multivariate quadratic functions
Sascha Wörz ()
Additional contact information
Sascha Wörz: University of Technology Munich
Journal of Combinatorial Optimization, 2017, vol. 34, issue 3, No 20, 964-986
Abstract:
Abstract Determining global integer extrema of an real-valued box-constrained multivariate quadratic functions is a very difficult task. In this paper, we present an analytic method, which is based on a combinatorial optimization approach in order to calculate global integer extrema of a real-valued box-constrained multivariate quadratic function, whereby this problem will be proven to be as NP-hard via solving it by a Travelling Salesman instance. Instead, we solve it using eigenvalue theory, which allows us to calculate the eigenvalues of an arbitrary symmetric matrix using Newton’s method, which converges quadratically and in addition yields a Jordan normal form with $$1 \times 1$$ 1 × 1 -blocks, from which a special representation of the multivariate quadratic function based on affine linear functions can be derived. Finally, global integer minimizers can be calculated dynamically and efficiently most often in a small amount of time using the Fourier–Motzkin- and a Branch and Bound like Dijkstra-algorithm. As an application, we consider a box-constrained bivariate and multivariate quadratic function with ten arguments.
Keywords: Combinatorial optimization; Global optimization; Global integer extrema; Real-valued-box-constrained multivariate quadratic functions; 90C27 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0123-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:34:y:2017:i:3:d:10.1007_s10878-017-0123-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-017-0123-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().