Bin packing under linear constraints
Zhenbo Wang () and
Kameng Nip
Additional contact information
Zhenbo Wang: Tsinghua University
Kameng Nip: Tsinghua University
Journal of Combinatorial Optimization, 2017, vol. 34, issue 4, No 13, 1198-1209
Abstract:
Abstract In this paper, we study a bin packing problem in which the sizes of items are determined by k linear constraints, and the goal is to decide the sizes of items and pack them into a minimal number of unit sized bins. We first provide two scenarios that motivate this research. We show that this problem is NP-hard in general, and propose several algorithms in terms of the number of constraints. If the number of constraints is arbitrary, we propose a 2-approximation algorithm, which is based on the analysis of the Next Fit algorithm for the bin packing problem. If the number of linear constraints is a fixed constant, then we obtain a PTAS by combining linear programming and enumeration techniques, and show that it is an optimal algorithm in polynomial time when the number of constraints is one or two. It is well known that the bin packing problem is strongly NP-hard and cannot be approximated within a factor 3 / 2 unless P = NP. This result implies that the bin packing problem with a fixed number of constraints may be simper than the original bin packing problem. Finally, we discuss the case when the sizes of items are bounded.
Keywords: Bin packing; Linear programming; Approximation algorithm; Worst-case ratio (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0140-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:34:y:2017:i:4:d:10.1007_s10878-017-0140-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-017-0140-2
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().