Two extremal problems related to orders
Biao Wu () and
Yuejian Peng ()
Additional contact information
Biao Wu: Hunan Normal University
Yuejian Peng: Hunan University
Journal of Combinatorial Optimization, 2018, vol. 35, issue 2, No 19, 588-612
Abstract:
Abstract We consider two extremal problems related to total orders on all subsets of $${\mathbb N}$$ N . The first one is to maximize the Lagrangian of hypergraphs among all hypergraphs with m edges for a given positive integer m. In 1980’s, Frankl and Füredi conjectured that for a given positive integer m, the r-uniform hypergraph with m edges formed by taking the first m r-subsets of $${\mathbb N}$$ N in the colex order has the largest Lagrangian among all r-uniform hypergraphs with m edges. We provide some partial results for 4-uniform hypergraphs to this conjecture. The second one is for a given positive integer m, how to minimize the cardinality of the union closure families generated by edge sets of the r-uniform hypergraphs with m edges. Leck, Roberts and Simpson conjectured that the union closure family generated by the first m r-subsets of $${\mathbb N}$$ N in order U has the minimum cardinality among all the union closure families generated by edge sets of the r-uniform hypergraphs with m edges. They showed that the conjecture is true for graphs. We show that a similar result holds for non-uniform hypergraphs whose edges contain 1 or 2 vertices.
Keywords: Colex order; Order U; Union-closure; Lagrangian of hypergraphs (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0196-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:35:y:2018:i:2:d:10.1007_s10878-017-0196-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-017-0196-z
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().