EconPapers    
Economics at your fingertips  
 

Critical objective function values in linear sum assignment problems

Ivan Belik () and Kurt Jörnsten
Additional contact information
Ivan Belik: Norwegian School of Economics

Journal of Combinatorial Optimization, 2018, vol. 35, issue 3, No 10, 842-852

Abstract: Abstract The linear sum assignment problem has been well studied in combinatorial optimization. Because of the integrality property, it is a linear programming problem with a variety of efficient algorithms to solve it. In the given research, we present a reformulation of the linear sum assignment problem and a Lagrangian relaxation algorithm for its reformulation. An important characteristic of the new Lagrangian relaxation method is that the optimal Lagrangian multiplier yields a critical bottleneck value. Lagrangian relaxation has only one Lagrangian multiplier, which can only take on a limited number of values, making the search for the optimal multiplier easy. The interpretation of the optimal Lagrangian parameter is that its value is equal to the price that must be paid for all objects in the problem to be assigned.

Keywords: Linear sum assignment problem; Lagrangian relaxation; optimal multiplier (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0240-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:35:y:2018:i:3:d:10.1007_s10878-017-0240-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-017-0240-z

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:35:y:2018:i:3:d:10.1007_s10878-017-0240-z