EconPapers    
Economics at your fingertips  
 

Majorization and the spectral radius of starlike trees

Mohammad Reza Oboudi ()
Additional contact information
Mohammad Reza Oboudi: Shiraz University

Journal of Combinatorial Optimization, 2018, vol. 36, issue 1, No 11, 129 pages

Abstract: Abstract A starlike tree is a tree with exactly one vertex of degree greater than two. The spectral radius of a graph G, that is denoted by $$\lambda (G)$$ λ ( G ) , is the largest eigenvalue of G. Let k and $$n_1,\ldots ,n_k$$ n 1 , … , n k be some positive integers. Let $$T(n_1,\ldots ,n_k)$$ T ( n 1 , … , n k ) be the tree T (T is a path or a starlike tree) such that T has a vertex v so that $$T{\setminus } v$$ T \ v is the disjoint union of the paths $$P_{n_1-1},\ldots ,P_{n_k-1}$$ P n 1 - 1 , … , P n k - 1 where every neighbor of v in T has degree one or two. Let $$P=(p_1,\ldots ,p_k)$$ P = ( p 1 , … , p k ) and $$Q=(q_1,\ldots ,q_k)$$ Q = ( q 1 , … , q k ) , where $$p_1\ge \cdots \ge p_k\ge 1$$ p 1 ≥ ⋯ ≥ p k ≥ 1 and $$q_1\ge \cdots \ge q_k\ge 1$$ q 1 ≥ ⋯ ≥ q k ≥ 1 are integer. We say P majorizes Q and let $$P\succeq _M Q$$ P ⪰ M Q , if for every j, $$1\le j\le k$$ 1 ≤ j ≤ k , $$\sum _{i=1}^{j}p_i\ge \sum _{i=1}^{j}q_i$$ ∑ i = 1 j p i ≥ ∑ i = 1 j q i , with equality if $$j=k$$ j = k . In this paper we show that if P majorizes Q, that is $$(p_1,\ldots ,p_k)\succeq _M(q_1,\ldots ,q_k)$$ ( p 1 , … , p k ) ⪰ M ( q 1 , … , q k ) , then $$\lambda (T(q_1,\ldots ,q_k))\ge \lambda (T(p_1,\ldots ,p_k))$$ λ ( T ( q 1 , … , q k ) ) ≥ λ ( T ( p 1 , … , p k ) ) .

Keywords: Starlike tree; Spectral radius; Majorization; 05C31; 05C50; 15A18 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10878-018-0287-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0287-5

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-018-0287-5

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0287-5