Uniqueness of equilibria in atomic splittable polymatroid congestion games
Tobias Harks () and
Veerle Timmermans ()
Additional contact information
Tobias Harks: University of Augsburg
Veerle Timmermans: Maastricht University
Journal of Combinatorial Optimization, 2018, vol. 36, issue 3, No 7, 812-830
Abstract:
Abstract We study uniqueness of Nash equilibria in atomic splittable congestion games and derive a uniqueness result based on polymatroid theory: when the strategy space of every player is a bidirectional flow polymatroid, then equilibria are unique. Bidirectional flow polymatroids are introduced as a subclass of polymatroids possessing certain exchange properties. We show that important cases such as base orderable matroids can be recovered as a special case of bidirectional flow polymatroids. On the other hand we show that matroidal set systems are in some sense necessary to guarantee uniqueness of equilibria: for every atomic splittable congestion game with at least three players and non-matroidal set systems per player, there is an isomorphic game having multiple equilibria. Our results leave a gap between base orderable matroids and general matroids for which we do not know whether equilibria are unique.
Keywords: Polymatroid; Congestion game; Uniqueness of equilibria (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-017-0166-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:36:y:2018:i:3:d:10.1007_s10878-017-0166-5
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-017-0166-5
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().