The min-up/min-down unit commitment polytope
Pascale Bendotti (),
Pierre Fouilhoux () and
Cécile Rottner ()
Additional contact information
Pascale Bendotti: Sorbonne Universités, Université Pierre et Marie Curie
Pierre Fouilhoux: Sorbonne Universités, Université Pierre et Marie Curie
Cécile Rottner: Sorbonne Universités, Université Pierre et Marie Curie
Journal of Combinatorial Optimization, 2018, vol. 36, issue 3, No 17, 1024-1058
Abstract:
Abstract The min-up/min-down unit commitment problem (MUCP) is to find a minimum-cost production plan on a discrete time horizon for a set of fossil-fuel units for electricity production. At each time period, the total production has to meet a forecast demand. Each unit must satisfy minimum up-time and down-time constraints besides featuring production and start-up costs. A full polyhedral characterization of the MUCP with only one production unit is provided by Rajan and Takriti (Minimum up/down polytopes of the unit commitment problem with start-up costs. IBM Research Report, 2005). In this article, we analyze polyhedral aspects of the MUCP with n production units. We first translate the classical extended cover inequalities of the knapsack polytope to obtain the so-called up-set inequalities for the MUCP polytope. We introduce the interval up-set inequalities as a new class of valid inequalities, which generalizes both up-set inequalities and minimum up-time inequalities. We provide a characterization of the cases when interval up-set inequalities are valid and not dominated by other inequalities. We devise an efficient Branch and Cut algorithm, using up-set and interval up-set inequalities.
Keywords: Unit commitment problem (UCP); Min-up/min-down; Polytope; Facet; Branch and Cut (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-018-0273-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:36:y:2018:i:3:d:10.1007_s10878-018-0273-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-018-0273-y
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().