EconPapers    
Economics at your fingertips  
 

LP-based pivoting algorithm for higher-order correlation clustering

Takuro Fukunaga ()
Additional contact information
Takuro Fukunaga: RIKEN Center for Advanced Intelligence Project

Journal of Combinatorial Optimization, 2019, vol. 37, issue 4, No 12, 1312-1326

Abstract: Abstract Correlation clustering is an approach for clustering a set of objects from given pairwise information. In this approach, the given pairwise information is usually represented by an undirected graph with nodes corresponding to the objects, where each edge in the graph is assigned a nonnegative weight, and either the positive or negative label. Then, a clustering is obtained by solving an optimization problem of finding a partition of the node set that minimizes the disagreement or maximizes the agreement with the pairwise information. In this paper, we extend correlation clustering with disagreement minimization to deal with higher-order relationships represented by hypergraphs. We give two pivoting algorithms based on a linear programming relaxation of the problem. One achieves an $$O(k \log n)$$ O ( k log n ) -approximation, where n is the number of nodes and k is the maximum size of hyperedges with the negative labels. This algorithm can be applied to any hyperedges with arbitrary weights. The other is an O(r)-approximation for complete r-partite hypergraphs with uniform weights. This type of hypergraphs arise from the coclustering setting of correlation clustering.

Keywords: Correlation clustering; Coclustering; LP-rounding algorithm (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10878-018-0354-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:37:y:2019:i:4:d:10.1007_s10878-018-0354-y

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-018-0354-y

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:37:y:2019:i:4:d:10.1007_s10878-018-0354-y