On the König deficiency of zero-reducible graphs
Miklós Bartha () and
Miklós Krész ()
Additional contact information
Miklós Bartha: Memorial University of Newfoundland
Miklós Krész: University of Szeged
Journal of Combinatorial Optimization, 2020, vol. 39, issue 1, No 16, 273-292
Abstract:
Abstract A confluent and terminating reduction system is introduced for graphs, which preserves the number of their perfect matchings. A union-find algorithm is presented to carry out reduction in almost linear time. The König property is investigated in the context of reduction by introducing the König deficiency of a graph G as the difference between the vertex covering number and the matching number of G. It is shown that the problem of finding the König deficiency of a graph is NP-complete even if we know that the graph reduces to the empty graph. Finally, the König deficiency of graphs G having a vertex v such that $$G-v$$G-v has a unique perfect matching is studied in connection with reduction.
Keywords: Graph matching; Independent set; König property; Graph reduction; Graph algorithm (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-019-00466-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:39:y:2020:i:1:d:10.1007_s10878-019-00466-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-019-00466-2
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().