Local search strikes again: PTAS for variants of geometric covering and packing
Pradeesha Ashok (),
Aniket Basu Roy () and
Sathish Govindarajan ()
Additional contact information
Pradeesha Ashok: International Institute of Information Technology
Aniket Basu Roy: Indian Institute of Science
Sathish Govindarajan: Indian Institute of Science
Journal of Combinatorial Optimization, 2020, vol. 39, issue 2, No 18, 618-635
Abstract:
Abstract Geometric Covering and Packing problems have been extensively studied in the last few decades and have applications in diverse areas. Several variants and generalizations of these problems have been studied recently. In this paper, we look at the following covering variants where we require that each point is “uniquely” covered, i.e., it is covered by exactly one object: Unique Coverage problem, where we want to maximize the number of uniquely covered points and Exact Cover problem, where we want to uniquely cover every point and minimize the number of objects used for covering. We also look at the following generalizations: Multi Cover problem, a generalization of Set Cover, the objective is to select the minimum subset of objects with the constraint that each input point p is covered by at least $$d_p$$dp objects in the solution, where $$d_p$$dp is the demand of point p. And Shallow Packing problem, a generalization of Packing problem, where we want to select the maximum subset of objects with the constraint that any point in the plane is contained in at most k objects in the solution. The above problems are NP-hard even for unit squares in the plane. Thus, the focus has been on obtaining good approximation algorithms. Local search has been quite successful in the recent past in obtaining good approximation algorithms for a wide variety of problems. We consider the Unique Coverage and Multi Cover problems on non-piercing objects, which is a broad class that includes squares, disks, pseudo-disks, etc. and show that the local search algorithm yields a PTAS approximation under the assumption that the depth of every input point is at most some fixed constant. For Unique Coverage we further assume that every object has at most a constant degree. For the Shallow Packing problem, we show that the local search algorithm yields a PTAS approximation for objects with sub-quadratic union complexity, which is a very broad class of objects that even includes non-piercing objects. For the Exact Cover problem, we show that finding a feasible solution is NP-hard even for unit squares in the plane, thus negating the existence of polynomial time approximation algorithms.
Keywords: Packing; Covering; PTAS; Local search; Non-piercing regions (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-019-00432-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:39:y:2020:i:2:d:10.1007_s10878-019-00432-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-019-00432-y
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().