EconPapers    
Economics at your fingertips  
 

Linear time algorithms for finding independent spanning trees on pyramid networks

Shuo-I Wang () and Fu-Hsing Wang ()
Additional contact information
Shuo-I Wang: Taiwan Police College
Fu-Hsing Wang: Chinese Culture University

Journal of Combinatorial Optimization, 2020, vol. 39, issue 3, No 10, 826-848

Abstract: Abstract The use of independent spanning trees (ISTs) has scientific applications in fault-tolerant requirement in network protocols and secure message distributions. Most of the designs of ISTs are for those interconnection networks with vertex symmetric property, implying that one can find ISTs rooted on a designated vertex, and, by the vertex symmetry property of the given network, hence have solved the ISTs problem on any arbitrary vertex. The existence of asymmetry makes the ISTs problem even harder than its symmetric counterpart. Cheriyan and Maheshwari (J Algorithms 9:507–537, 1988) showed that, for any 3-connected graph, 3-ISTs rooted at any vertex can be found in O(|V||E|) time. In this paper, we propose linear time algorithms that solved 3-ISTs rooted at an arbitrary vertex of pyramid networks.

Keywords: Independent spanning trees; Interconnection networks; Pyramid networks; Graph algorithms (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00521-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:39:y:2020:i:3:d:10.1007_s10878-020-00521-3

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-020-00521-3

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:39:y:2020:i:3:d:10.1007_s10878-020-00521-3