Partial inverse min–max spanning tree problem
Javad Tayyebi () and
Ali Reza Sepasian ()
Additional contact information
Javad Tayyebi: Birjand University of Technology
Ali Reza Sepasian: Fasa University
Journal of Combinatorial Optimization, 2020, vol. 40, issue 4, No 14, 1075-1091
Abstract:
Abstract This paper addresses a partial inverse combinatorial optimization problem, called the partial inverse min–max spanning tree problem. For a given weighted graph G and a forest F of the graph, the problem is to modify weights at minimum cost so that a bottleneck (min–max) spanning tree of G contains the forest. In this paper, the modifications are measured by the weighted Manhattan distance. The main contribution is to present two algorithms to solve the problem in polynomial time. This result is considerable because the partial inverse minimum spanning tree problem, which is closely related to this problem, is proved to be NP-hard in the literature. Since both the algorithms have the same worse-case complexity, some computational experiments are reported to compare their running time.
Keywords: Spanning trees; Inverse problems; Manhattan distance; Bottleneck type (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00656-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:40:y:2020:i:4:d:10.1007_s10878-020-00656-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-020-00656-3
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().