A scenario-based robust optimization with a pessimistic approach for nurse rostering problem
Mohammad Reza Hassani and
J. Behnamian ()
Additional contact information
Mohammad Reza Hassani: Bu-Ali Sina University
J. Behnamian: Bu-Ali Sina University
Journal of Combinatorial Optimization, 2021, vol. 41, issue 1, No 11, 143-169
Abstract:
Abstract Nurse rostering problem (NRP) or nurse scheduling problem is a combinatorial optimization problem that involves the assignment of shifts to nurses while managing coverage constraints, expertise categories, labor legislation, contractual agreements, personal preferences, etc. The focus on this problem serves to improve service quality, nurse health and their satisfaction, and reduction of hospital costs. The existence of uncertainties and inaccurate estimates of the workload leads to a non-optimal or an infeasible solution. In this study, due to the importance of human resource management and crisis management in the health care system, a sustainable approach was developed with a robust scenario-based optimization method. Since NRP is a NP-hard problem, it is impossible to solve it in medium and large sizes in reasonable time. In this paper, a well-known metaheuristic algorithm, namely the differential evolution (DE) algorithm was proposed due to its sound structural features for searching in binary space. Then its performance was compared against the genetic algorithm. The results show that the DE algorithm has good performance.
Keywords: Nurse rostering problem; Scenario-based approach; Robust optimization; Differential evolution algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00667-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:41:y:2021:i:1:d:10.1007_s10878-020-00667-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-020-00667-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().