Zero forcing versus domination in cubic graphs
Randy Davila () and
Michael A. Henning ()
Additional contact information
Randy Davila: University of Johannesburg
Michael A. Henning: University of Johannesburg
Journal of Combinatorial Optimization, 2021, vol. 41, issue 2, No 16, 553-577
Abstract:
Abstract In this paper, we study a dynamic coloring of the vertices of a graph G that starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is a zero forcing set of G if, by iteratively5 applying the forcing process, every vertex in G becomes colored. The zero forcing number of G is the minimum cardinality of a zero forcing set of G. In this paper, we prove that if $$G \ne K_4$$ G ≠ K 4 is a connected cubic graph, then the zero forcing number of G is bounded above by twice its domination number, where the domination number of G is the minimum cardinality of a set of vertices of G such that every vertex not in S is adjacent to some vertex in S.
Keywords: Zero forcing set; Zero forcing number; Dominating set; Domination number; 05C69 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00692-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:41:y:2021:i:2:d:10.1007_s10878-020-00692-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-020-00692-z
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().