The Steiner cycle and path cover problem on interval graphs
Ante Ćustić () and
Stefan Lendl ()
Additional contact information
Ante Ćustić: Simon Fraser University Surrey
Stefan Lendl: Graz University of Technology
Journal of Combinatorial Optimization, 2022, vol. 43, issue 1, No 11, 226-234
Abstract:
Abstract The Steiner path problem is a common generalization of the Steiner tree and the Hamiltonian path problem, in which we have to decide if for a given graph there exists a path visiting a fixed set of terminals. In the Steiner cycle problem we look for a cycle visiting all terminals instead of a path. The Steiner path cover problem is an optimization variant of the Steiner path problem generalizing the path cover problem, in which one has to cover all terminals with a minimum number of paths. We study those problems for the special class of interval graphs. We present linear time algorithms for both the Steiner path cover problem and the Steiner cycle problem on interval graphs given as endpoint sorted lists. The main contribution is a lemma showing that backward steps to non-Steiner intervals are never necessary. Furthermore, we show how to integrate this modification to the deferred-query technique of Chang et al. to obtain the linear running times.
Keywords: Interval graphs; Steiner cycle; Hamiltonian cycle; Linear time (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-021-00757-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:43:y:2022:i:1:d:10.1007_s10878-021-00757-7
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-021-00757-7
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().