An approximation algorithm for a general class of parametric optimization problems
Cristina Bazgan (),
Arne Herzel (),
Stefan Ruzika (),
Clemens Thielen () and
Daniel Vanderpooten ()
Additional contact information
Cristina Bazgan: Université Paris-Dauphine
Arne Herzel: University of Kaiserslautern
Stefan Ruzika: University of Kaiserslautern
Clemens Thielen: Technical University of Munich
Daniel Vanderpooten: Université Paris-Dauphine
Journal of Combinatorial Optimization, 2022, vol. 43, issue 5, No 18, 1328-1358
Abstract:
Abstract In a (linear) parametric optimization problem, the objective value of each feasible solution is an affine function of a real-valued parameter and one is interested in computing a solution for each possible value of the parameter. For many important parametric optimization problems including the parametric versions of the shortest path problem, the assignment problem, and the minimum cost flow problem, however, the piecewise linear function mapping the parameter to the optimal objective value of the corresponding non-parametric instance (the optimal value function) can have super-polynomially many breakpoints (points of slope change). This implies that any optimal algorithm for such a problem must output a super-polynomial number of solutions. We provide a method for lifting approximation algorithms for non-parametric optimization problems to their parametric counterparts that is applicable to a general class of parametric optimization problems. The approximation guarantee achieved by this method for a parametric problem is arbitrarily close to the approximation guarantee of the algorithm for the corresponding non-parametric problem. It outputs polynomially many solutions and has polynomial running time if the non-parametric algorithm has polynomial running time. In the case that the non-parametric problem can be solved exactly in polynomial time or that an FPTAS is available, the method yields an FPTAS. In particular, under mild assumptions, we obtain the first parametric FPTAS for each of the specific problems mentioned above and a $$(3/2 + \varepsilon )$$ ( 3 / 2 + ε ) -approximation algorithm for the parametric metric traveling salesman problem. Moreover, we describe a post-processing procedure that, if the non-parametric problem can be solved exactly in polynomial time, further decreases the number of returned solutions such that the method outputs at most twice as many solutions as needed at minimum for achieving the desired approximation guarantee.
Keywords: Parametric optimization; Approximation algorithm; Parametric assignment problem; Parametric minimum cost flow problem; Parametric shortest path problem; Parametric metric TSP (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00646-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-020-00646-5
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-020-00646-5
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().