On total and edge coloring some Kneser graphs
C. M. H. de Figueiredo,
C. S. R. Patrão,
D. Sasaki () and
M. Valencia-Pabon
Additional contact information
C. M. H. de Figueiredo: COPPE, Universidade Federal do Rio de Janeiro
C. S. R. Patrão: COPPE, Universidade Federal do Rio de Janeiro
D. Sasaki: IME, Universidade do Estado do Rio de Janeiro
M. Valencia-Pabon: LIPN, Université Sorbonne Paris Nord
Journal of Combinatorial Optimization, 2022, vol. 44, issue 1, No 6, 119-135
Abstract:
Abstract In this work, we investigate the total and edge colorings of the Kneser graphs K(n, s). We prove that the sparse case of Kneser graphs, the odd graphs $$O_k=K(2k-1,k-1)$$ O k = K ( 2 k - 1 , k - 1 ) , have total chromatic number equal to $$\Delta (O_k) + 1$$ Δ ( O k ) + 1 . We prove that Kneser graphs K(n, 2) verify the Total Coloring Conjecture when n is even, or when n is odd not divisible by 3. For the remaining cases when n is odd and divisible by 3, we obtain a total coloring of K(n, 2) with $$\Delta (K(n,2)) + 3$$ Δ ( K ( n , 2 ) ) + 3 colors when $$n \equiv 3~\hbox {mod}~4$$ n ≡ 3 mod 4 , and with $$\Delta (K(n,2)) + 4$$ Δ ( K ( n , 2 ) ) + 4 colors when $$n \equiv 1~\hbox {mod}~4$$ n ≡ 1 mod 4 . Furthermore, we present an infinite family of Kneser graphs K(n, 2) that have chromatic index equal to $$\Delta (K(n,2))$$ Δ ( K ( n , 2 ) ) .
Keywords: Total coloring; Edge coloring; Odd graphs; Kneser graphs; 05C15; 05C85; 05C69; 05C76 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-021-00816-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-021-00816-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-021-00816-z
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().