The sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees
Qiao Zhang,
Xiucui Guan (),
Junhua Jia and
Xinqiang Qian
Additional contact information
Qiao Zhang: Southeast University
Xiucui Guan: Southeast University
Junhua Jia: Southeast University
Xinqiang Qian: Southeast University
Journal of Combinatorial Optimization, 2022, vol. 44, issue 1, No 4, 74-93
Abstract:
Abstract Network interdiction problems by upgading critical edges/nodes have important applications to reduce the infectivity of the COVID-19. A network of confirmed cases can be described as a rooted tree that has a weight of infectious intensity for each edge. Upgrading edges (nodes) can reduce the infectious intensity with contacts by taking prevention measures such as disinfection (treating the confirmed cases, isolating their close contacts or vaccinating the uninfected people). We take the sum of root-leaf distance on a rooted tree as the whole infectious intensity of the tree. Hence, we consider the sum of root-leaf distance interdiction problem by upgrading edges/nodes on trees (SDIPT-UE/N). The problem (SDIPT-UE) aims to minimize the sum of root-leaf distance by reducing the weights of some critical edges such that the upgrade cost under some measurement is upper-bounded by a given value. Different from the problem (SDIPT-UE), the problem (SDIPT-UN) aims to upgrade a set of critical nodes to reduce the weights of the edges adjacent to the nodes. The relevant minimum cost problem (MCSDIPT-UE/N) aims to minimize the upgrade cost on the premise that the sum of root-leaf distance is upper-bounded by a given value. We develop different norms to measure the upgrade cost. Under weighted Hamming distance, we show the problems (SDIPT-UE/N) and (MCSDIPT-UE/N) are NP-hard by showing the equivalence of the two problems and the 0–1 knapsack problem. Under weighted $$l_1$$ l 1 norm, we solve the problems (SDIPT-UE) and (MCSDIPT-UE) in O(n) time by transforimg them into continuous knapsack problems. We propose two linear time greedy algorithms to solve the problem (SDIPT-UE) under unit Hamming distance and the problem (SDIPT-UN) with unit cost, respectively. Furthermore, for the the minimum cost problem (MCSDIPT-UE) under unit Hamming distance and the problem (MCSDIPT-UN) with unit cost, we provide two $$O(n\log n)$$ O ( n log n ) time algorithms by the binary search methods. Finally, we perform some numerical experiments to compare the results obtained by these algorithms.
Keywords: Network interdiction problem; Upgrading critical edges; Upgrading critical nodes; Tree; Knapsack problem; Greedy algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-021-00819-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:44:y:2022:i:1:d:10.1007_s10878-021-00819-w
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-021-00819-w
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().