EconPapers    
Economics at your fingertips  
 

Computing a maximum clique in geometric superclasses of disk graphs

Nicolas Grelier ()
Additional contact information
Nicolas Grelier: ETH

Journal of Combinatorial Optimization, 2022, vol. 44, issue 4, No 48, 3106-3135

Abstract: Abstract In the 90’s Clark, Colbourn and Johnson wrote a seminal paper where they proved that maximum clique can be solved in polynomial time in unit disk graphs. Since then, the complexity of maximum clique in intersection graphs of d-dimensional (unit) balls has been investigated. For ball graphs, the problem is NP-hard, as shown by Bonamy et al. (FOCS ’18). They also gave an efficient polynomial time approximation scheme (EPTAS) for disk graphs. However, the complexity of maximum clique in this setting remains unknown. In this paper, we show the existence of a polynomial time algorithm for a geometric superclass of unit disk graphs. Moreover, we give partial results toward obtaining an EPTAS for intersection graphs of convex pseudo-disks.

Keywords: Pseudo-disks; Line transversals; Intersection graphs (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-022-00853-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:44:y:2022:i:4:d:10.1007_s10878-022-00853-2

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-022-00853-2

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:44:y:2022:i:4:d:10.1007_s10878-022-00853-2