EconPapers    
Economics at your fingertips  
 

A polyhedral approach to least cost influence maximization in social networks

Cheng-Lung Chen (), Eduardo L. Pasiliao () and Vladimir Boginski ()
Additional contact information
Cheng-Lung Chen: University of Central Florida
Eduardo L. Pasiliao: Air Force Research Laboratory, Eglin AFB
Vladimir Boginski: University of Central Florida

Journal of Combinatorial Optimization, 2023, vol. 45, issue 1, No 43, 31 pages

Abstract: Abstract The least cost influence maximization problem aims to determine minimum cost of partial (e.g., monetary) incentives initially given to the influential spreaders on a social network, so that these early adopters exert influence toward their neighbors and prompt influence propagation to reach a desired penetration rate by the end of cascading processes. We first conduct polyhedral analysis on a substructure that describes influence propagation assuming influence weights are unequal, linear and additively separable. Two classes of facet-defining inequalities based on a mixed 0–1 knapsack set contained in this substructure are proposed. We characterize another exponential class of valid and facet-defining inequalities utilizing the concept of minimum influencing subset. We show that these inequalities can be separated in polynomial time efficiently. Furthermore, a polynomial-time dynamic programming recursion is presented to solve this problem on a simple cycle graph. For arbitrary graphs, we propose a new exponential class of valid inequalities that dominates the cycle elimination constraints and an efficient separation algorithm for them. A compact convex hull description for a special case is presented. We illustrate the effectiveness of these inequalities via a delayed cut generation algorithm in the computational experiments.

Keywords: Influence maximization; Social networks; Valid inequalities; Delayed cut generation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-022-00971-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00971-x

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-022-00971-x

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00971-x