EconPapers    
Economics at your fingertips  
 

Signed rearrangement distances considering repeated genes, intergenic regions, and indels

Gabriel Siqueira (), Alexsandro Oliveira Alexandrino () and Zanoni Dias ()
Additional contact information
Gabriel Siqueira: University of Campinas
Alexsandro Oliveira Alexandrino: University of Campinas
Zanoni Dias: University of Campinas

Journal of Combinatorial Optimization, 2023, vol. 46, issue 2, No 7, 36 pages

Abstract: Abstract Genome rearrangement distance problems allow to estimate the evolutionary distance between genomes. These problems aim to compute the minimum number of mutations called rearrangement events necessary to transform one genome into another. Two commonly studied rearrangements are the reversal, which inverts a sequence of genes, and the transposition, which exchanges two consecutive sequences of genes. Seminal works on this topic focused on the sequence of genes and assumed that each gene occurs exactly once on each genome. More realistic models have been assuming that a gene may have multiple copies or may appear in only one of the genomes. Other models also take into account the nucleotides between consecutive pairs of genes, which are called intergenic regions. This work combines all these generalizations defining the signed intergenic reversal distance (SIRD), the signed intergenic reversal and transposition distance (SIRTD), the signed intergenic reversal and indels distance (SIRID), and the signed intergenic reversal, transposition, and indels distance (SIRTID) problems. We show a relation between these problems and the signed minimum common intergenic string partition (SMCISP) problem. From such relation, we derive $$\varTheta (k)$$ Θ ( k ) -approximation algorithms for the SIRD and the SIRTD problems, where k is maximum number of copies of a gene in the genomes. These algorithms also work as heuristics for the SIRID and SIRTID problems. Additionally, we present some parametrized algorithms for SMCISP that ensure constant approximation factors for the distance problems. Our experimental tests on simulated genomes show an improvement on the rearrangement distances with the use of the partition algorithms.

Keywords: Genome rearrangement; Intergenic regions; Reversal; Transposition; G.1.2; G.2.1 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-023-01083-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:46:y:2023:i:2:d:10.1007_s10878-023-01083-w

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-023-01083-w

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:46:y:2023:i:2:d:10.1007_s10878-023-01083-w