EconPapers    
Economics at your fingertips  
 

An improved upper bound for the online graph exploration problem on unicyclic graphs

Koji M. Kobayashi () and Ying Li ()
Additional contact information
Koji M. Kobayashi: The University of Tokyo
Ying Li: The University of Tokyo

Journal of Combinatorial Optimization, 2024, vol. 48, issue 1, No 4, 38 pages

Abstract: Abstract The online graph exploration problem, which was proposed by Kalyanasundaram and Pruhs (Theor Comput Sci 130(1):125–138, 1994), is defined as follows: Given an edge-weighted undirected connected graph and a specified vertex (called the origin), the task of an algorithm is to compute a path from the origin to the origin which contains all the vertices of the given graph. The goal of the problem is to find such a path of minimum weight. At each time, an online algorithm knows only the weights of edges each of which consists of visited vertices or vertices adjacent to visited vertices. Fritsch (Inform Process Lett 168:1006096, 2021) showed that the competitive ratio of an online algorithm is at most three for any unicyclic graph. On the other hand, Brandt et al. (Theor Comput Sci 839:176–185, 2020) showed a lower bound of two on the competitive ratio for any unicyclic graph. In this paper, we showed the competitive ratio of an online algorithm is at most 5/2 for any unicyclic graph.

Keywords: Graph exploration; Online algorithms; Competitive analysis; Unicyclic graph (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-024-01192-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:48:y:2024:i:1:d:10.1007_s10878-024-01192-0

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-024-01192-0

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:48:y:2024:i:1:d:10.1007_s10878-024-01192-0