On Disjunctive Cuts for Combinatorial Optimization
Adam N. Letchford
Additional contact information
Adam N. Letchford: Lancaster University
Journal of Combinatorial Optimization, 2001, vol. 5, issue 3, No 3, 299-315
Abstract:
Abstract In the successful branch-and-cut approach to combinatorial optimization, linear inequalities are used as cutting planes within a branch-and-bound framework. Although researchers often prefer to use facet-inducing inequalities as cutting planes, good computational results have recently been obtained using disjunctive cuts, which are not guaranteed to be facet-inducing in general. A partial explanation for the success of the disjunctive cuts is given in this paper. It is shown that, for six important combinatorial optimization problems (the clique partitioning, max-cut, acyclic subdigraph, linear ordering, asymmetric travelling salesman and set covering problems), certain facet-inducing inequalities can be obtained by simple disjunctive techniques. New polynomial-time separation algorithms are obtained for these inequalities as a by-product. The disjunctive approach is then compared and contrasted with some other ‘general-purpose’ frameworks for generating cutting planes and some conclusions are made with respect to the potential and limitations of the disjunctive approach.
Keywords: integer programming; cutting planes; max-cut problem; asymmetric travelling salesman problem; set covering problem (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1023/A:1011493126498 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:5:y:2001:i:3:d:10.1023_a:1011493126498
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1023/A:1011493126498
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().