EconPapers    
Economics at your fingertips  
 

Any Maximal Planar Graph with Only One Separating Triangle is Hamiltonian

Chiuyuan Chen ()
Additional contact information
Chiuyuan Chen: National Chiao Tung University

Journal of Combinatorial Optimization, 2003, vol. 7, issue 1, No 5, 79-86

Abstract: Abstract A graph is hamiltonian if it has a hamiltonian cycle. It is well-known that Tutte proved that any 4-connected planar graph is hamiltonian. It is also well-known that the problem of determining whether a 3-connected planar graph is hamiltonian is NP-complete. In particular, Chvátal and Wigderson had independently shown that the problem of determining whether a maximal planar graph is hamiltonian is NP-complete. A classical theorem of Whitney says that any maximal planar graph with no separating triangles is hamiltonian, where a separating triangle is a triangle whose removal separates the graph. Note that if a planar graph has separating triangles, then it can not be 4-connected and therefore Tutte's result can not be applied. In this paper, we shall prove that any maximal planar graph with only one separating triangle is still hamiltonian.

Keywords: planar graph; maximal planar graph; hamiltonian cycle; separating triangle; NP-complete (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1023/A:1021998507140 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:7:y:2003:i:1:d:10.1023_a:1021998507140

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1023/A:1021998507140

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:7:y:2003:i:1:d:10.1023_a:1021998507140