Medical consumable usage control based on Canopy_K-means clustering and WARM
Ying Yang (),
Huijing Wu () and
Caixia Yan ()
Additional contact information
Ying Yang: Shanghai Polytechnic University
Huijing Wu: Shanghai Jiaotong University
Caixia Yan: Shanghai Jiaotong University
Journal of Combinatorial Optimization, No 0, 18 pages
Abstract:
Abstract Medical consumable usage is ineluctable in treatment process. High consumable cost not only brings pressure to the patients and their families, but also reduces the performance of hospital operation management. Therefore, precise medical consumable usage management is very important to the hospital. Large amounts of data accumulated over the years in hospital provide a resource for pattern and rule discovery. A medical consumable usage control method based on Canopy_K-means and Weighted Association Rules Mining (WARM) is proposed in this paper. Firstly, Canopy algorithm is used to get rough clusters; Secondly, K-means algorithm is used to get accurate clusters; Thirdly, ARM and WARM are used to discover rules between disease and consumable among a cluster; In the Fourth, the consumable usage control method in daily requisition has been designed. Half-year data from an A-level hospital in Shanghai have been studied, the results show that WARM can help to find rules between disease and consumable, and the control method based on WARM is feasible to apply.
Keywords: Medical consumable management; Medical consumable usage control; CANOPY_K-means clustering; WARM (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-019-00468-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-019-00468-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-019-00468-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().