EconPapers    
Economics at your fingertips  
 

A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital

Jing Fan and Hui Shi ()
Additional contact information
Jing Fan: Shanghai Polytechnic University
Hui Shi: Shanghai Jiaotong University

Journal of Combinatorial Optimization, No 0, 13 pages

Abstract: Abstract In a hospital, the nursing assistants in wards are always responsible for delivering patients to do some medical examinations, and the nursing assistants in the medical departments need take these patients back to the corresponding wards after examinations. We transform this actual problem about nursing assistants’ daily work into a three-stage supply chain scheduling problem if patients are regarded as jobs, the ward as the customer, the nursing assistants as vehicles and the medical department as the processing machine in the factory. The capacity of each vehicle is limited because the nursing assistant only can deliver several patients once. And the transportation schedule back and forth between the customer and the factory are the same in view of the actual arrangement. In order to reduce the average consumption time of patients, the objective is to minimize the total flowtime, that is, the sum of arrival time of every completed job back to the customer. We show that the problem is NP-hard in the strong sense, and provide an approximation algorithm with the performance ratio of 2. Moreover, we study some polynomially solvable cases of the problem.

Keywords: Three-stage supply chain scheduling problem; Strongly NP-hard; Approximation algorithm (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-019-00500-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-019-00500-3

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-019-00500-3

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-019-00500-3