Coordination mechanisms for scheduling selfish jobs with favorite machines
Cong Chen () and
Yinfeng Xu
Additional contact information
Cong Chen: South China University of Technology
Yinfeng Xu: Xi’an Jiaotong University
Journal of Combinatorial Optimization, No 0, 33 pages
Abstract:
Abstract This paper studies the favorite machine model, where each machine has different speed for different types of jobs. The model is a natural generalization of the two related machines model and captures the features of some real life problems, such as the CPU–GPU task scheduling, the two products scheduling and the cloud computing task scheduling. We are interested in the game-theoretic version of the scheduling problem in which jobs correspond to self-interested users and machines correspond to resources. The goal is to design coordination mechanisms (local policies) with a small price of anarchy (PoA) for the scheduling game of favorite machines. We first analyze the well known Makespan policy for our problem, and provide exact bounds on both the PoA and the strong PoA (SPoA). We also propose a new local policy, called FF-LPT, which outperforms several classical policies (e.g., LPT, SPT, FF-SPT and Makespan) in terms of the PoA, and guarantees fast convergence to a pure Nash equilibrium. Moreover, computational results show that the FF-LPT policy also dominates other policies for random instances, and reveal some insights for practical applications.
Keywords: (Strong) price of anarchy; Load balancing game; Coordination mechanism; Related machines (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00592-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00592-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-020-00592-2
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().