EconPapers    
Economics at your fingertips  
 

The principal eigenvector to $$\alpha $$α-spectral radius of hypergraphs

Jing Wang (), Liying Kang () and Erfang Shan ()
Additional contact information
Jing Wang: Shanghai University
Liying Kang: Shanghai University
Erfang Shan: Shanghai University

Journal of Combinatorial Optimization, No 0, 18 pages

Abstract: Abstract For a connected hypergraph H with $$rank(H)=r$$rank(H)=r , let $$\mathcal {D}(H)$$D(H) and $$\mathcal {A}(H)$$A(H) be the diagonal tensor of degrees and the adjacency tensor of H, respectively. For $$0 \le \alpha

Keywords: Hypergraph; $$\alpha $$ α -Spectral radius; Principal eigenvector; Adjacency tensor (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-020-00617-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00617-w

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-020-00617-w

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00617-w